The Push/Pull

Shoring up the core motion of self-propulsion, as tutored by the hard-rowing Steven Redgrave

Jul 1, 1997
Outside Magazine
The coach said he liked the looks of my hands and feet," recalls four-time Olympic gold medalist Steven Redgrave when asked what first drew him to his sport. "They were awfully big for the rest of my body." A few days later, the floppy-limbed British 13-year-old was hoisted aboard a creaky bucket of boards and bolts known as a bank-tub — basically a rowboat fitted with pulleys and chains and docked on dry land. It was the forerunner of the modern rowing machine, and there, looking out over the English countryside, Redgrave began his career. "I was quite clumsy then, you know."

That was 22 years ago, but the record suggests that Redgrave's first coach was indeed a fine talent scout. The oarsman eventually grew to six-foot-five and 225 pounds, the Platonic ideal for a sculler. Perhaps more important, Redgrave mastered the elusive art of rowing, a skill that demands finesse, brute strength, and a tolerance for a Sisyphean workload. You pull, then you push away, and you do it until you drop. These motions — and dogged effort — are central not only to Redgrave's sport but also to any nonrunning sport that requires self-propulsion — climbing and swimming being the foremost examples. Redgrave's version of this — his stroke — is easy to spot from the shore because of its utter hitchlessness. He is a machine, and to a rower, that is the ultimate compliment. "He curls up just like a cocked spring," says Michael Shannon, a sports physiologist at the new U.S. Olympic Training Center near San Diego, "and then — pow! — he lets loose with a highly controlled explosion of arms and legs."

If you look at a computer model of somebody rowing a boat, this apparently seamless act dissolves into a million moving parts — levers pivoting on levers pivoting on levers. The important thing, however, isn't all the cranking and turning of the body's gears, but the net result of that activity: two simple arcs painted in thin air above the gunwales, the path that the hands make as they pull on the oars.

To begin the stroke, Redgrave bends his knees and reaches forward over his legs. His arms are fully extended so that they have maximum power when they begin pulling. His feet are braced for leverage when the legs, the longest, most powerful levers in the body, extend in the first moment of the stroke. Then, in synchronization with his partner, Redgrave drops his blades into the water — a moment called the catch — and his body begins a complicated progression. In an explosive nanosecond, the muscles of the butt, thighs, and calves act to extend the hips, knees, and ankles. Then, starting at the base of the spine, the back's erector spinae muscles gradually begin to swing back away from the knees, pulling the trunk into an upright position, vertebra by vertebra. As the torso sits up straight, the arms begin their job of transferring the legs' and torso's power into speed that the boat can use. They pull. The biceps begin reeling in the oar handles while the rhomboids of the upper back and the latissimus dorsi step in to add some extra horsepower. "It's always advantageous if you can engage the body's bigger, stronger muscles," says Jeff Broker. (A fact readily understood by big sport climbers and burly surfers alike, where the arm's efforts are complemented by almost every large muscle in the chest, back, abdomen and legs.) Finally, Redgrave's elbows collapse in at his sides, and the oar blades slice through the water.

Of course, it's hard to talk about the stroke without moving away from biomechanics and into the realm of biochemistry. The ability to make one perfect push/pull motion isn't worth much in itself. You need a passel of them — Redgrave makes about 250 in a 2,000-meter race. Mixing strength and stamina in such strong doses requires immense aerobic capacity. "A good athlete has a VO2 max of about six liters per minute," says Shannon. "Steven is a seven." That means that Redgrave's muscles extract an amazing 15 percent more oxygen than those of the typical athlete. Of course, in the heat of battle, even Redgrave's lungs eventually lag, and muscle tissue begins to break down slightly as it tries to make usable energy sans oxygen, a process that produces lactic acid, a major source of pain. But Redgrave is able to fend off these chemical demons till later in the race than his opponents.

Indeed, as the push/pull motion is repeated over and over (44 strokes per minute is pretty much flat-out), you begin to see why it is said to resemble some widget-producing contraption from the nineteenth century. Redgrave's back, which has been described as being like a second chest facing the other direction, expands and deflates like a bellows as the erector spinae muscles extend to lift the torso upright. The arms move forward, then remain that way through the recovery. Yet amid this mechanical motion, Redgrave's shoulders always look relaxed and slightly rounded, engaged only when necessary. They, at least, are clearly human. "That stillness," explains Broker, "equals biomechanical efficiency."

"Some people call it swing," Redgrave says, referring to rower's slang for the quasi-mystical glide with which a boat moves when a rower's trunk, legs, arms, and fingers are working together to produce those two power-filled arcs with the oar handles. "Swing of the body. Swing of the boat. I don't use that word myself — but I certainly know how it feels."


Whether you climb, swim, or stroke, all the magic is in the muscles

Obviously, the best place to increase your pushing and pulling proficiency is at the gym. But don't think that the ability to bench press twice your body weight is the be-all and end-all — it's as important to have the full complement of your body's muscles working at the same level and to be able to do so sustainably. Thus a three-pronged approach is in order.

Lift weights. Redgrave suggests you visit the gym at least twice a week. Leg presses and squats are crucial for lower-body strength, which because of the explosive power it provides is perhaps even more important than a massive set of biceps. Do three sets of 12 repetitions of each exercise, setting the resistance at about half of your body weight. The bench press and "bench pull" are also central to Redgrave's routine. For the latter, which works the rhomboids, lats, triceps, and biceps, lie on your stomach on an elevated bench with a barbell resting on the floor beneath you. Pull the weight toward your chest, and then gently lower it again. Do five sets of 12, using one-third of your weight. Finally, do 50 crunches a day on an incline board to strengthen the abs, which must be in balance, strengthwise, with the muscles of the back.

Increase your overall fitness. Redgrave works out 42 hours a week to prepare himself for a total of about an hour of racing per year. Obviously most of this time is spent on the water, but other activities help him add to his baseline of endurance, which is key to maintaining power over long durations. He says that the average amateur should run at least two miles three days a week and swim 1,000 meters on three days, resting one day per week.

Row. Even if you have no interest in the sport itself, rowing can improve your athletic ability in a way that no amount of weight lifting can. Because it works all of your major muscles in tandem, the stroke forces each to carry its own weight, so to speak, thereby targeting your weakest muscles more efficiently than any other means. If you don't have access to a shell or a body of water, fret not: Rowing machines, such as the Concept II Indoor Rower ($725; 800-245-5676), stimulate the stroke quite well, says Olympic Training Center sports physiologist Michael Shannon, which will ultimately help you work through those glitches in your form — all without even getting wet.


A) At start of stroke, knees are bent and feet are braced for leverage. Torso is bent at the waist and arms are extended straight in front of body. Blades are dropped into water at the catch.

B) Biceps and rhomboids pull oars back toward the body. Muscles of the back pull trunk into upright position, widening the angle between chest and knees. Legs drive off from the brace and begin to straighten, transferring power to the blades.

C) Shoulders are slightly rounded, and arms are flexed in preparation for the release.


If you're strapped for a boat or a body of water bigger than your bathtub, fear not: The gym is just as good a place to gauge your push/pull ability. While these exercises are great strength-testers, done in long sets they'll also be a yardstick for endurance. Try doing seated rows on the low pulley machine, using a quarter of your body weight, with the goal of completing 50 reps smoothly, sans rest. Next, use the same amount of weight for the bench pull, this time shooting for 100 reps in a row. Finally, the seated leg press will tell you how you're faring on the push end of things. Use half your body weight and aim for 100 reps, keeping your legs slightly bent.

More at Outside

Elsewhere on the Web