Brave New Body

You'd be amazed at how far scientists have progressed in their ability to turn humans into unstoppable athletic machines. Here's a peek at a future that's coming fast.

Apr 19, 2011
Outside Magazine
Future of Human Performance

The future of human performance    Photo: Illustrations by Bryan Christie

One reason exercise gets more difficult with age: arteries lose elastin and begin to stiffen, which means blood doesn't move as efficiently and less oxygen reaches muscles. Earlier this year, researchers at the University of Pittsburgh grew stretchy blood vessels from cells taken out of young baboons. Lab-grown tissues could one day replace severely blocked arteries in people with heart disease—or the stiffening arteries of older athletes.

The simplest way to build strong bones? Try some good vibrations. In recent studies, mice that stood on a vibrating platform developed thicker, healthier bones—and far less body fat—than unshimmied rodents. Researchers think the shaking causes stem cells in bone marrow to differentiate into bone tissue instead of fat. Fortunately, many gyms already have vibration platforms. Note: mild vibes are all it takes.

One of the more vexing challenges of cartilage-replacement surgery is getting the new stuff to stay in place. A possible solution: magnets! In a recent Japanese study, scientists implanted microscopic magnets at the base of damaged rat knees, then injected cartilage cells that had been mixed with magnetized iron oxide. The magnetized cells glommed onto the site in 48 hours and began dividing and multiplying.

Ever since Tiger Woods admitted to using platelet-rich plasma, or PRP, last year to help heal his mangled knees, the therapy has become wildly popular for a range of problems. The treatment requires siphoning blood (yours), centrifuging it until it's a viscous goop packed with platelets (cell fragments involved in blood clotting) and growth factors (which cause cells to divide and multiply), and injecting it into sore tissue. In early tests, treated tendons became thicker and stronger—so much so that the International Olympic Committee banned the practice for uninjured athletes.

Sprains are among the most common sports injuries and can cause joints to become unstable and arthritic. In the past, surgeons would fuse a repeatedly injured ankle, but early reports suggest replacements—some made of metal and polyethylene—rotate and respond almost as well as the real thing.

To View the pdf, Click Here